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Chaotic Behavior in Stellar Dynamos 

N. O. Weiss  1 

Slowly rotating main-sequence stars with deep convective zones have activity 
cycles like the sun's. The solar cycle is aperiodic and modulated to give intervals 
of reduced activity. A simple sixth-order system, obtained by truncating the 
dynamo equations, has solutions that mimic this behavior. The transition to 
chaos is analyzed and the astrophysical significance of these results is discussed. 
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1. I N T R O D U C T I O N  

Sunspots have been studied since the time of Galileo and solar activity is 
known to vary cyclically with an average period of about 11 years. In the 
last decade, magnetic cycles have also been detected in a number of main- 
sequence stars. This solar-stellar connection allows us to use knowledge of 
the sun to explain stellar activity, and observations of stars to improve our 
understanding of the solar cycle. (1) There is a wealth of detailed infor- 
mation on the distribution of magnetic features over the surface of the sun. 
Such features cannot be resolved on stars but stellar observations do make 
it possible to explore the effect on magnetic activity of varying the rotation 
rate or the depth of the convective zone. 

It is generally accepted that the sun's magnetic cycle is generated by a 
hydromagnetic dynamo located in, or at the base of, the convective 
zone. (2-4) Model equations, with periodic solutions that reproduce essential 
features of the solar cycle, can readily be constructed. The sunspot cycle is, 
however, aperiodic and there are intervals (such as the Maunder minimum 
in the late 17th century) when scarcely any spots appear. This pattern 
suggests that the solar dynamo behaves like a nonlinear oscillator in a 
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regime where chaos has developed. Thus there is a need to relate dynamo 
theory to recent advances in the theory of nonlinear dynamical systems. 

In what follows, I shall first review observations of solar and stellar 
activity; then I shall outline those aspects of dynamo theory that are 
relevant. In Section 4 I describe a simple nonlinear dynamo model that 
exhibits both periodic and chaotic oscillations. (5) The transition to chaos 
can be investigated by studying a reduced fifth-order system, (6) which is 
discussed in Section 5. Finally, the astrophysical significance of these results 
is summarized in the conclusion. 

2. SOLAR A N D  STELLAR M A G N E T I C  ACTIV ITY  

The main features of the solar cycle have frequently been described (7) 
and they need only be summarized here. Sunspots appear at the beginning 
of a new cycle, at latitudes of + 30~ as the cycle progresses more sunspots 
occur at lower latitudes; then, toward the end of the cycle, the number of 
spots diminishes and the last spots appear near the equator, as the next 
cycle begins at higher latitudes. Thus activity appears as waves which 
migrate toward the equator with a period of about 11 years. Spots typically 
occur in pairs with opposite magnetic polarity, oriented parallel to the 
equator, and the sense of polarity is different in the northern and southern 
hemispheres. Moreover, the fields reverse after 11 years, so the magnetic 
cycle has a period of about 22 years. 

Magnetic activity can be measured by computing the total area 
covered by sunspots or (more arbitrarily) by the sunspot number. The 
mean sunspot number (averaged over several rotations) varies 
aperiodically with time, with an average period that is well defined. On a 
longer time scale, there are episodes (such as the Sp6rer and Maunder 
minima in the 16th and 17th centuries) when sunspots almost completely 
disappear. (8) These grand minima correspond to periods of anomalous 
production of 14C by cosmic,rays and the incidence of grand minima over 
the past 5000 years can be derived from anomalies in 14C dating. (9) It seems 
natural to explain this behavior as an example of chaos in a nonlinear 
dynamical system, with aperiodic oscillations modulated irregularly on a 
longer time scale. 

Magnetic fields have been measured directly, using the Zeeman effect, 
in about 20 main sequence stars. (1~ This group of stars is much more 
active than the sun, with fields comparable to that in a sunspot covering up 
to half their surfaces. These starspots are associated with flares and 
variations in luminosity. Thermal X-ray emission from stellar coronae 
provides indirect evidence of magnetic activity and the observations 
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obtained with the Einstein satellite show that there is more X-ray emission 
as the rotation rate is increased, m) 

The most systematic observations of stellar activity have been 
obtained at Mt. Wilson, using C a  + H and K emission, which is known to 
be correlated with magnetic fields on the sun. For stars of fixed spectral 
type, the C a  + emission increases monotonically with increasing rotation 
rate. (~2) As a star evolves it loses angular momentum owing to magnetic 
braking: the magnetic field heats the corona and produces a stellar wind, 
which exerts a magnetic couple on the star. Thus the rotation period of a G 
star rises from about three days, shortly after its arrival on the main 
sequence, to 25 days at the age (4.6 x 10 9 yr) of the sun. In the young and 
rapidly rotating stars, magnetic activity is irregular and apparently acyclic 
(though any cycle might be masked by short-term fluctuations). Magnetic 
cycles resembling that in the sun have been identified in 12 older, more 
slowly rotating stars and, for a star of fixed mass, the cycle period increases 
approximately linearly with the rotation period. (13) 

Linear (kinematic) dynamo models predict cyclic behavior but these 
observations raise several important questions for the theoretician. What 
mechanism limits dynamo action in a nonlinear regime? How does 
aperiodicity develop in such a system? Can the grand minima be 
explained? And why is there no clear evidence for cycles in rapidly rotating 
stars? To answer these questions we must consider dynamo theory in more 
detail. 

3. D Y N A M O  M O D E L S  

The basic principles of dynamo action are the production of toroidal 
flux from a poloidal field through differential rotation and regeneration of a 
reversed poloidal field owing to helicity. (2'3) To describe this process we 
must solve the induction equation 

-~-Bt = curl(u x B) + qV2B (1) 

and the equation of motion 

p ~ + ( u - V ) u  = p g - - V p + j x B + p v V 2 u  (2) 

together with an energy equation, for the velocity u and the magnetic field 
B (where other symbols are defined as usual). Large-scale numerical 
simulations by Gilman, (14~ for a Boussinesq fluid, and Glatzmaier, (is) in the 
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anelastic approximation, have produced a convincing description of the 
angular momentum distribution in the convective zone. They find that the 
angular velocity, /2, decreases inward, in agreement with values derived 
from the splitting of frequencies of solar oscillations. (16) Magnetic cycles 
can indeed be generated but the dynamo waves travel poleward, in the 
wrong direction, as Glatzmaier (15) will explain. 

An easier approach is to obtain mean field equations by averaging 
azimuthally and parametrizing the difficult nonlinear effects. Then we may 
separate the (axisymmetric) poloidal and toroidal mean fields by writing 

B = Be + B~, B e = curl(A~) (3) 

where ~ is a unit vector in the azimuthal direction. From (1) 

8A 
- -  = ~ B  + t / ~ 2 A  ( 4 )  
8t 

8B 
- -  = r sin 0B e �9 VY2 + t/~2B (5) 
8t 

where the operator @2 = V 2 - l /r  2 sin 2 0. Equations (4) and (5) describe an 
ag2-dynamo, with the effects of helicity represented by ~, and an enhanced 
turbulent diffusivity t/. For a given geometry there is a single stability 
parameter, the dynamo number 

D = o~f f2 'L4 / t l  2 (6) 

where/2'  measures the angular velocity gradient and L is a typical length. 
As D is increased, the trivial solution B = 0 loses stability at a Hopf bifur- 
cation. Solutions to this linear problem give dynamo waves that propagate 
toward the equator--provided that (2 increases inward. Since (2 actually 
seems to decrease inward through most of the convective zone, it is 
tempting to suppose that the dynamo is located in a thin shell at the inter- 
face between the radiative and convective zones, an assumption that has 
several advantages. (4) 

In a nonlinear dynamo growth of the magnetic field is limited by the 
effect of the Lorentz force on the motion. This may lead to quenching of 
the ~ effect or to changes in the azimuthal velocity v. Then we may write 
the averaged azimuthal component of (2) as 

8v = F(r ) + p - l j  x B. ~ + v~2v (7) 
8t 
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where turbulent transport of angular momentum is parametrized in terms 
of a volume force pF and a diffusivity v. If we write v = V(r)+ w(r, t), 
where the mean flow V driven by convection satisfies 

F +  F ~ Z v  ~--~- 0 (8) 

and the Lorentz force drives a fluctuating velocity w such that 

Ow 1 
- -  = - -  IV x ( B ~ ) ]  x Be" ~ + vNZw (9) 
~?t /~oP 

then we expect w to vary with twice the frequency of the magnetic cycle. 
Such torsional waves have indeed been observed in the s u n .  (17) 

A more drastic approach is to replace the mean field equations (4), 
(5), and (9) by some truncated system of coupled nonlinear differential 
equations whose properties can be investigated in some detail. This 
procedure is somewhat dubious but has obvious advantages. Indeed, 
chaotic behavior was found as long ago as 1962 for the third-order system 
governing a pair of coupled disk dynamos (18'19) introduced to model rever- 
sals of the earth's magnetic field. (2~ More recently, hyperchaos has been 
found for three disk dynamos, governed by a sixth-order system. (21) The 
geodynamo maintains a more or less steady field for intervals much longer 
than the ohmic decay time for the earth's core, whereas the period of a 
stellar magnetic cycle is far smaller than the ohmic decay time. In the next 
section I shall describe a simple system that models the transition to chaos 
for an oscillatory dynamo. 

4. NONLINEAR D Y N A M O  WAVES 

Following Parker,/3) we consider dynamo waves in a thin spherical 
shell and adopt local cartesian coordinates with the z axis pointing radially 
outward and the y axis pointing westward. Then we consider plane waves 
propagating in the x direction, such that 

B = (0, B(t) e ik~, ikA(t) e ik~) (lo) 

in the presence of an azimuthal velocity v = ( V ( z ) + w ( x , z ,  t))~. Now 
Eqs. (4) and (5) can be rewritten in dimensionless form as 

A = 2 D B - - A ,  [ ~ = i A - B  (11) 

where the dynamo number D=o~V'/2qZk 3, and the trivial solution A = 
B = 0  undergoes a Hopf bifurcation at D = I .  For D > I ,  Eq. (11) has 
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unstable oscillatory solutions, corresponding to one-dimensional dynamo 
waves.(3) 

Growth of these solutions is limited by nonlinear effects. For instance, 
we might suppose that the ~ effect is reduced as the field increases, so that 

/1 = 2D(1 + tr IBI2) -1 - A (12) 

or that magnetic buoyancy leads to an enhanced dissipation of toroidal 
flux, so that 

J~ = i A  - (1 + 2 IBI2)B (13) 

where ~c, 2 are positive constants. Equations (12) and (13) possess stable, 
periodic nonlinear solutions/s) Alternatively, we may consider the effect of 
the Lorentz force on the sheared velocity, setting 

#w 
~3z co~ + co(t) exp 2ikx (14) 

so that (4), (5), and (9) can be written in the form 

Jt=2DB-A, B=i(l +coo)A-�89 (15) 

Cho=�89 cb= -iAB-vco (16) 

where coo is real but co, like A and B, is complex, and v0, v are constants. 
The seventh-order system (15)-(16) again possesses an exact periodic 
solution. It is convenient to consider two limiting cases. In the first, we let 
v ~ 0% so that co ~ 0 and we obtain a fifth-order system. The Lorentz force 
slows down differential rotation, reducing the effective value of the dynamo 
number, until an equilibrium is reached. This process models behavior 
found in Gilman's computations. (14) The second limit is obtained by letting 
Vo--* 0% coo~0,  so that (15)-(16) reduce to a sixth-order system, and 
dynamo action is limited by fluctuations in differential rotation. 

Observations of stellar magnetic cycles can be used to eliminate some 
of these models. (13) We expect that D oc~ 2, since the ~ effect depends 
linearly on the angular velocity through the Coriolis force and differential 
rotation should also vary linearly with f2 in a slowly rotating star. We 
therefore require that the toroidal field strength, [B[, should increase and 
that the cycle period should decrease with increasing D, in order to match 
the observations. For the fifth-order system, however, [BI decreases 
monotonically for D > 2 and the cycle period is constant; quenching of the 
c~ effect, as in (12), does give an increasing magnetic field but the period is 
still constant. Thus both these processes (which correspond to reducing the 
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effective value of D) can be ruled out. On the other hand, limitation either 
through enhanced losses, as in (13), or owing to fluctuations in differential 
rotation, is compatible with observations. The latter process also leads to 
chaotic behavior resembling that found in the sun and solutions of the 
sixth-order system have therefore been studied in some detail. (5) 

This nonlinear system possesses an exact periodic solution for D > 1, 
with a frequency p(v, D) such that A and B vary as exp ipt, while co varies 
as exp 2ipt, as in the torsional waves observed on the sun. (17) As D is 
increased, the periodic solution becomes unstable if v < 1. When v = 0.5, 
there is a Hopf  bifurcation at D ~ 2.07, leading to doubly periodic behavior. 
Figure la shows a trajectory for D = 2.6, projected onto the BlCOl plane, 
where B1 = NeB, etc., and B~ is shown as a function of time in Fig. lb. 
Evidently the trajectory lies on a two-toms in phase space. At D~3.47  
there is a further Hopf bifurcation, leading to triply periodic motion, 
followed by a transition to chaos around D = 3.84. Figure 2 shows irregular 
behavior found for D = 8.0. The trajectory wanders chaotically, spending 
intervals in the neighborhood of the origin in phase space. The magnetic 
field oscillates aperiodically and is modulated to give episodes of reduced 
activity. This plot bears a strong qualitative resemblance to the record of 
solar activity, with aperiodic magnetic cycles modulated to give grand 
minima. So the most obvious nonlinear features of the solar cycle can be 
reproduced by a simple sixth-order system of equations. In order to assess 
the significance of these results we must analyze the bifurcation sequence in 
more detail. 

5. Q U A S I P E R I O D I C I T Y  A N D  C H A O S  

The system (15)-(16) possesses a symmetry under the transformation 
(A, B, co) ~ (Ae ~, Be ~, COeZir corresponding to symmetry with respect to 
translation qn the x direction. It is therefore possible to reduce its order by 
making the transformation 

A = 2p~/2ei~ B =  D-lp~/2xei~ CO=D-lye 2i~ (17) 

Then 0 is ignorable and the sixth-order system [obtained by setting 
Vo = o% COo = 0 in (16)] reduces to the fifth-order system (6) 

j6 = p(x + x*) -- 2p 

2 = 2 i D - i y - x  2, ~=  - 2 i p x - - y ( x - - x * ) - - v y  
(18) 

This system has two "tr';vial" fixed points, at p = y =  0, x =  _+(1 + i)01/2, 
which we shall call O1, 02, respectively. O2 is unstable for all positive 

822/39/5-6-3 ~ 
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Fig, 1. Solutions of the sixth-order system far D = 2.6. (a) Trajectory projected onto the 
Bjc~z plane. (b)B,  as a function of time. The trajectory lies on a torus and B1 is doubly 
periodic. 
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As Fig. 1 but for D = 8.0. The solution is chaotic and shows intervals of reduced 
activity when the trajectory hovers near the origin. 
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values of D but its unstable manifold (the ptane p = y  = 0) is contained in 
the stable manifold of O1. As D is increased through unity, a real eigen- 
value at O1 passes through zero. Thus the Hopf bifurcation in (11) 
becomes a simple bifurcation for (18) and the limit cycle is replaced by a 
nontrivial fixed point. 

Subsequent bifurcations have been followed in detail for the case 
v=0.5/6) At D~2.07 there is a Hopf bifurcation, followed by the 
appearance of a limit cycle (corresponding to a two-torus in the original 
sixth-order system) which sheds a two-torus (corresponding to the triply 
periodic motion mentioned in the previous section) when D ~ 3.47. Figure 3 
shows a trajectory for D=3.5 ,  projected (for convenience of represen- 
tation) onto the rzl plane, where r = 2p 1/2 and z = rx, together with a Poin- 
car~ section in the same plane for Yl = -2 .  Apparently the trajectory lies 
on a torus. As D is increased, frequency locking occurs: Figure 4 shows a 
periodic solution for D = 3.8, which repeats exactly after winding 25 times 
round the torus. At D~3.806 there is a period-doubling bifurcation, 
followed by periodic trajectories which repeat after 50 cycles, like that in 
Figure 5. This is followed by a Feigenbaum cascade of bifurcations, 
accumulating at D,~3.84. Thereafter, solutions seem to be chaotic, except 
for narrow windows where periodic solutions can be identified. 

Inspection of Figs. 3-5 shows that trajectories approach closer to the 
origin as D is increased. It has therefore been conjectured/6) that the 
unstable periodic solution with winding number 1/25 continues to exist for 
all D > 3.806 and that, in the limit D --, 0% there is an unstable heteroclinic 
orbit connecting the two singular points O1 and 02 of the system (18). At 
O1 the eigenvalues are -2 (1  + i )D  1/2, - ( v  + 2iDm), and (D m -  1), the 
first is complex and strongly contracting, the second is Complex and stable, 
and the third is real and strongly unstable. The last two satisfy Shilnikov's 
criterion and local analysis suggests that chaotic behavior should be found 
for D sufficiently large./=) At 02, on the other hand, the eigenvalues are 
- (D1/2+ 1), - v  + 2iD m and 2(1 + i)D1/2: the first is real and strongly 
contracting, while the other two are complex but have identical imaginary 
parts. It is not obvious whether such eigenvalues lead to chaos. We do, 
however, expect to find chaos associated with the elaborate heteroclinic 
trajectory connecting 01 and 02 with p r 0 and then returning from 02 to 
01 in the plane p = y = O. 

6. CONCLUSION 

The model system (15)-(16) can be derived as a truncation of the 
mean field dynamo equations. There is, however, no rigorous justification 
for adopting the latter equations in a star. Still less can we be certain that 
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Fig. 3. Solutions of the reduced fifth order system (18) for D = 3.5. (a) Trajectory projected 
onto the rz~ plane. (b) Poincar~ section in the rZl plane for Yl = -2.0. The trajectory lies on a 
torus, whose cross section is a closed curve. 
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Fig. 4. As Fig. 3 but for D = 3.8. The solution is periodic and repeats exactly after 25 cycles. 
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the bifurcation structure found for a low-order, arbitrarily truncated system 
applies also to the partial differential equations from which it was derived. 
Nevertheless, the model system does include the relevant physics and yields 
solutions that mimic the observed properties of magnetic cycles in the sun 
and stars. With all its limitations, it provides some clues to the behavior of 
nonlinear stellar dynamos. 

First of all, we have established that a simple nonlinear model with 
dynamical coupling can produce both aperiodic cycles and episodes of 
reduced activity. The behavior of the solar cycle can be explained as a con- 
sequence of deterministic chaos without invoking stochastic disturbances. 
Furthermore, the grand minima are apparently associated with the per- 
sistence of a "ghost" attractor with a small winding number in the chaotic 
regime. Indeed, the envelope of activity (as determined from ~4C 
anomalies) shows similar structure around different grand minima/9) Thus 
the record of solar activity suggests a transition through quasiperiodicity to 
chaos as the dynamo number (or the angular velocity of a star) is 
increased. 

Such a bifurcation sequence is not peculiar to the system that we have 
considered and it is not difficult to construct third-order systems that 
exhibit similar behavior. (22'231 So it is likely that other physical mechanisms 
(such as instabilities associated with magnetic buoyancy (24)) could produce 
a similar pattern of activity. We have already seen how simple models can 
be used to isolate the most significant nonlinear processes in a stellar 
dynamo. When used in conjunction with self-consistent simulations,/25) 
such models make it possible to recognize the bifurcation structure in quite 
complicated problems. 
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